FRC Precast Segmental Lining of TBM Tunnels

Introduction and historical background Handbook of Precast Segmental Tunnel Lining Systems

Verya Nasri, PhD, PE Chief Tunnel Engineer, AECOM

Segment Workshop, Warsaw 2025, May 27

Organized by Warsaw University of Technology and Polish Tunneling Association

Endorsed by ITA and ITACET

First Session	starting at 9:00 AM
9:00 - 9:15	Introduction and historical background, Verya Nasri, PhD, PE, Chief Tunnel Engineer, AECOM, USA, 15 minutes
9:15 - 10:00	Design fundamentals, Verya Nasri, PhD, PE, Chief Tunnel Engineer, AECOM, USA, 45 minutes
10:00 - 10:30	Concrete technology for fiber segment, Barzin Mobasher, PhD, PE, Professor at Arizona State University, USA
Coffee Break,	from 10:30 AM to 11:00 AM
Second Sessi	on starting at 11:00 AM
11:00 - 11:45	Fiber segment, Benoit De Rivaz, Global Technical Manager, Bekaert, France
11:45 - 12:30	Connections and accessories, Christophe Delus, Tunnel Division Director, Optimas France
Lunch, from 1	2:30 PM to 1:30 PM
Third Session	starting at 1:30 PM
13:30 - 14:15	Sealing gaskets, Andreas Diener, Product Manager Tunneling, Cordes, Germany
14:15 - 15:00	Formwork systems, Stefan Medel, Managing Director, Herrenknecht Formwork, Germany
Coffee Break,	from 3:00 PM to 3:30 PM
Third Session	starting at 3:30 PM
15:30 - 16:00	SFRC segment production for II nd metro line in Warsaw, Bartiomiej Dziuban, Gulermak Polska, Poland
16:00 - 16.45	The use of SFRC for the segmental lining of the Świnoujście tunnel, Wojciech Nowak, PORR Polska, Poland
16:45 - 17:00	Concluding remarks, Verya Nasri, PhD, PE, Chief Tunnel Engineer, AECOM, USA
End of Short (Course 17:00 PM

History and Technical Developments of Segmental Linings First 150 Years of Segmental Tunnel Linings

- First production in late 1800s.....then early 1900's (e.g. Parmley, O'Rourke, and others)
- Becoming more popular in last 50 years, due in part from much of the following improvements
 - Improved materials
 - Improved production facilities
 - Precision manufacturing and repeatability
 - Use of mechanized shields and TBMs
 - Systems approach to tunnel excavation and lining, often in more egregious ground conditions
 - Economies (life cycle cost) over other options

History and Technical Developments of Segmental Linings TBM Developments and Lining Installation

- Tunnel Designers and Contractors called for changes in tunnel lining approaches and materials and required a "systems approach" to tunnelling operations; i.e. TBM excavation and lining, to improve overall economy.
- Single-pass tunnel linings became the preferred approach for soft ground tunnels (and some rock tunnels) using TBMs.
- Improvements in material properties, segment forms, connections, sealing and life cycle analyses made precast concrete more attractive than alternate materials.
- Precast concrete segments were also more economically attractive in most cases (but not all).

History and Technical Developments of Segmental Linings Timeline for Segmental Tunnel Linings

- From initial design concepts to mid-1900s
- Demise of preference for cast iron linings
- Early notable projects and innovative proposals
- Segmentally-lined rock tunnels

History and Technical Developments of Segmental Linings O'Rourke "Interlocking Tunnel Block" Lining

- Early Installation Montreal, Quebec (1912)
 - Mount Royal Railway Tunnel (first major installation)
 - Twin parallel tunnels excavated concurrently
 - Mixed face tunnelling using PSTL for crown support
 - Tunnel in use for over 100 years until recently reconstructed and repurposed for metro

History and Technical Developments of Segmental Linings Mount Royal Railway Tunnel – Montreal

History and Technical Developments of Segmental Linings Mount Royal Railway Tunnel – Montreal

- Segment Casting Methods and Materials
 - Machined cast iron molds were preferred
 - High tolerance on dimensions and repeatability
 - Carousel segment production facility on-site
 - Cast-in grooves and inserts

History and Technical Developments of Segmental Linings Holland Tunnel (New York City) – Concept

- Early Concept for a tunnel under the Hudson River ay New York City (1919);
 - Initially proposed by O'Rourke and Goethals (Panama Canal fame). Not constructed since a twin-bore tunnel arrangement was preferred.
 - First vehicle tunnel proposed under the Hudson River.
 Existing tunnels were dedicated to railroads (only).
 - Approx 12.8m (42 ft) bore diameter and possibly requiring the largest tunnelling shield ever considered....extending the shield technology in its time.

History and Technical Developments of Segmental Linings Holland Tunnel (New York City) – Concept

- Early Concept for a tunnel under the Hudson River at New York City (1919)
 - Three-foot thick precast "interlocking tunnel blocks" were proposed as the initial tunnel lining for ground support and groundwater control.
 - Over and under twin roadway decks, possibly the first of this configuration ever considered.
 - This concept was not constructed; instead, twin tunnels using cast iron segmental liners.

History and Technical Developments of Segmental Linings Advancements in Mechanization & Monitoring

Mechanization and Automation

- Mechanical and vacuum handling devices; plant and tunnel
- Manufacturing automation plant
- Segment selection and positioning in tunnel
- Measurement and monitoring
 - Ring orientation selection
 - Instrumentation loads and deflections
 - Gas sealing and watertighness

History and Technical Developments of Segmental Linings Summary

- Tunnel demand (i.e. quantities and loads)
- Tunnel location and function influenced design
- Tunnel durability (life cycle) & design innovations
- Material developments (including sustainability)
- Economic analyses and approach to constructing the work
- Mechanization, power and control for segment handling and installation
- Skilled labor force and Health and Safety considerations

Handbook Content

Chapter 1	Introduction	and History of T	echnical Developments
-----------------------------	--------------	------------------	-----------------------

- Chapter 2 Geotechnical Design Considerations
- Chapter 3 Analysis and Design of Precast Segmental Tunnel Linings
- Chapter 4 Concrete Technology
- Chapter 5 Fiber Reinforcement
- Chapter 6 Connections and Accessories
- Chapter 7 Gasket Sealing Systems
- Chapter 8 Formwork Systems
- Chapter 9 Production
- Chapter 10 Handling, Transportation and Installation
- Chapter 11 Backfill Grouting of the Tunnel Liner
- Chapter 12 Durability and Service Life
- Chapter 13 Innovative Products and Applications

VERYA NASRI, DAVID KLUG, BRIAN FULCHER, AND JAMES A. MORRISON

HANDBOOK OF PRECAST SEGMENTAL TUNNEL LINING SYSTEMS

Chapter 1 Introduction and History of Technical Developments

- 1.0 Introduction
- 1.1 Tunnel Segment Development Timeline
- 1.2 Tunnel Shield Developments Related to Segmental Tunnel Linings
- 1.3 Walter C. Parmley and The Parmley System for Precast Tunnel Linings
- 1.4 John Francis O'Rourke Interlocking Tunnel Blocks
- 1.5 Early Applications of Precast Segmental Tunnel Liners
- 1.6 Mid-Century Assessments and Planning Reports
- 1.7 Fabricated Steel Tunnel Lining
- 1.8 Modern Era Precast Segmental Tunnel Liner Developments
- 1.9 Precast Segmental Tunnel Liners Used in Bored Hard Rock Tunnels
- 1.10 Transition to Precast Concrete Segmental Tunnel and Shaft Linings
- 1.11 Technical Developments in the Modern Era
- 1.12 Logistics of Supply for Precast Segmental Tunnel Lining Materials
- 1.13 Health and Safety Aspects of Precast Segmental Tunnel Linings
- 1.14 Conclusions and Recommendations
- 1.15 Reference Publications and Additional Reading Materials

A.F. Mattson 1906, US Patent No.830,345 for Precast Tunnel Lining Segments

Chapter 2 – Geotechnical Investigations for Segmental Tunnel Lining Design

- 2.0 Introduction
- 2.1 Geology Leads the Design
- 2.2 Spectrum of Earth Materials
- 2.3 Desktop Data Study
- 2.4 Ground Investigation Process
- 2.5 Geotechnical Parameters Required for Segmental Tunnel Lining Design
- 2.6 How to Report Data-Geotechnical Reports
- 2.7 Reference Publications
- 2.8 Published Codes and Standards
- 2.9 Reference Papers

Typical OTV/ATV Borehole Logging Output

Chapter 3 Analysis and Design of Precast Segmental Linings

- 3.0. Introduction
- 3.1. Geometry of Tunnel Segmental Rings and Their Systems
- 3.2. Design for Production and Transient Stages
- 3.3. Design for Construction Stages
- 3.4. Design for Final Service Stages
- 3.5. Detailed Design Considerations
- 3.6. Tests and Performance Evaluation
- 3.7. Design for Serviceability Limit State (SLS)
- 3.8. Design for sustainability
- 3.9. References
- 3.10. Notation

Shield-Driven TBM Processes Simulated in a Finite Element Model

Chapter 4 Precast Concrete Technologies

- 4.1 Introduction
- 4.2 Design of Concrete materials for Serviceability and Sustainability Requirements
- 4.3 Concrete Constituents and Cement Hydration Aspects
- 4.4 Aggregates
- 4.5 Water
- 4.6 Chemical Admixtures
- 4.7 Fiber Reinforced Concrete
- 4.8 Characterization of Ductility in Fiber-reinforced Concrete
- 4.9 Material testing levels and Backcalculation Approaches
- 4.10 Full-Scale Tunnel Segment Testing
- 4.11 Application of Statistical Process Control for QC
- 4.12 Fresh State, Rheology Tests and Workability
- 4.13 Durability Parameters and aspects of Service Life
- 4.14 Diffusivity Based Approaches for Control of Service Life
- 4.15 Fire Protection and damage Control
- 4.16 Pre-Construction Testing for Selecting Optimum Concrete Mixture
- 4.17 Authored Documents

Ternary Diagram of Portland Cement and Supplementary Cementing Materials

Chapter 5 Fiber Reinforcement in Precast Concrete Segments

- 5.1 Introduction Fiber Reinforcement in Precast Segments
- 5.2 Testing Procedures and Performance Criteria
- 5.3 Quality Control During Construction
- 5.4 Passive Fire Protection (PFP) with Micro-PP Fibers
- 5.5 Sustainability
- 5.6 Combined Solutions
- 5.7 New Types of Fibers Macro Synthetic / Polymers
- 5.8 Tunnel Lining References Using FRC Precast Segments
- 5.9 References and Additional Reading Materials

Various Types of Fibers in Use Today

Chapter 6 Connections and Accessories for Segmental Tunnel Linings

- Introduction
- 6.1 Connecting Bolts
- 6.2 Dowels and Bicones
- 6.3 Guide Rods
- 6.4 Grouting and Lifting Inserts
- 6.5 Joint Packing Materials
- 6.6 Testing of Connection Systems and Accessories
- 6.7 Design of Connection Systems and Accessories for Specific Loads
- 6.8 Design of Connectors at Cross-Passage Break-Out Areas
- 6.9 Through Segment Bolting / Dowel Systems for Seismic Applications
- 6.10 Recent Developments in Segment Joint Connection Systems
- 6.11 Fastening Systems for Tunnel Segments
- 6.12 Case Histories of Interesting Projects

Force Exerted by the Gasket on the Bolting System

Chapter 7 Gasket Systems for Sealing Segmental Tunnel Linings

- 7.0 Historical Background
- 7.1 Design and Construction Considerations for Segment Gaskets
- 7.2 Gasket Profile Design
- 7.3 Gasket Groove Design
- 7.4 Manufacturing Considerations for Gaskets
- 7.5 Gasket Materials
- 7.6 Watertightness Testing
- 7.7 Gasket Relaxation and Factor of Safety
- 7.8 Gasket Load-Deflection Behavior
- 7.9 Gasket Corner Design
- 7.10 Fire Resistance
- 7.11 Glued-On Gaskets
- 7.12 Anchored Gaskets
- 7.13 Installation of Gasketed Segments into the Tunnel
- 7.14 Gasket Repair
- 7.15 Project-Specific Gasket Performance Testing
- 7.16 Gasket Quality Control
- 7.17 New Developments in Gasket Systems
- 7.18 Case Histories of Major Tunnel Project with Stringent Gasket Requirements
- 7.19 References and Reading Lists

Tightness - Diagram of Profile CTS 44 / 20 AVT (93008)

T-Joint-Test Device made of steel plates
Pressure increase < 20 bar 1bar/5 mir
> 20 bar 2bar/5 min

Gasket Water Tightness Diagram

Chapter 8 Formwork Systems for Precast Segmental Tunnel Linings

- 8.1 Segment Mold Design
- 8.2 Segment Mold Manufacturing
- 8.3 Design of Segment Plant Layout and Main Components
- 8.4 Carrousel and Stationary Production
- 8.5 Segment Handling Equipment
- 8.6 Three-Dimensional Measurement of Segment Molds and Segments
- 8.7 Master Ring Erection and Virtual Ring Build
- 3.8 Tolerances of Segment Molds and Segments
- 8.9 Segment Tracking and Quality Documentation System
- 8.10 Segment Mold Quality Control
- 8.11 Innovation in Tunnel Segment Production
- 8.12 Case Histories of Segment Production
- 8.13 References and Additional Reading Lists

Hydraulically Operated Mold

Chapter 9 Fabrication of Precast Segmental Tunnel Linings

- 9.0 Introduction
- 9.1 General Summary
- 9.2 Segment Fabrication Plant Layout
- 9.3 Carousel and Stationary Segment Formwork Production
- 9.4 Rebar Reinforced Concrete
- 9.5 Fiber Reinforced Concrete Production Precaster's Considerations
- 9.6 Concrete Batching, Mixing and Curing
- 9.7 Segment Connection, Accessories and Gasket Installation
- 9.8 Segment Demolding, Handling and Storage Precaster's General Overview
- 9.9 Segment Dimensional Measurement and Documentation Precaster's Viewpoint
- 9.10 Test and Demonstration Ring Precaster's Considerations
- 9.11 Segment Tolerances Precaster's Considerations
- 9.12 Segment Quality Control Precaster's Considerations
- 9.13 Logistics of Supply Precaster's Considerations
- 9.14 Precast Plant Labor Crews
- 9.15 References and Additional reading Materials

Fiber Dosing and Metering System

Chapter 10 Transportation, Handling, and Installation of Precast Segmental Tunnel Linings

- 10.0 Introduction
- 10.1 Segment Supply Logistics
- 10.2 Segment Handling on the Surface
- 10.3 Transporting Segments to the Tunnel Heading
- 10.4 Segment Handling and Transfer Within the TBM
- 10.5 Ring Erection within the TBM Tail Shiel
- 10.6 Importance of Annular Grout Support Around Segmental Liner Rings
- 10.7 Special Challenges During TBM Launch
- 10.8 Safety Considerations for Segment Handling and Installation
- 10.9 Trends in Automation of Segment Handling and Erection
- 10.10Reference Documents

Robotic Arm at Segment Unloading Station

Chapter 11 Backfill Grouting of Precast Segmental Linings

11.0	Introduction
11.1	Necessity for Annular Backfill Grout
11.2	Objectives of Annular Backfill Grout
11.3	Grout Types
11.4	Grout Injection Methods
11.5	Selection of the Grouting System
11.6	Mix Design Development
11.7	Grout Systems
11.8	Project Example of One-Component Grout
11.9	Project Example of Two-Component Grout
11.10	Project Example of Pea Gravel with Flood Grout
11.11	Testing Procedures
11.12	Annular Grout Quality Control
11.13	Safety
11.14	References and Further Reading Materials

مرم اللم مراج مراج مراج مراج

11 0

Injecting Grout Through TBM Tail Shield

Chapter 12 Durability and Service Life of Precast Segmental Linings

12.0	Introduction
12.1	Conventional Degradation Mechanisms
12.3	Sulfate Attack
12.4	Acid Attack
12.5	Alkali-Aggregate Reaction
12.6	Frost Attack and Freeze-and-Thaw Damage
12.7	Stray Current Corrosion
12.8	Durability Under Coupling Multi Degradation Factors
12.9	Design for Service Life
12.10	Code Approaches
12.11	Performance-Based Approaches
12.12	References

Reinforced Concrete Deterioration Model

Chapter 13 Innovative Products and Applications

13.0	Current Position of Precast Segmental tunnel Linings in Tunnel Industry
13.1	Major Innovation that Impacted Precast Segmental Tunnel Linings Market Worldwide
13.2	Innovations in Segment Connector Componentry Systems
13.3	Innovations in Precast Segmental Tunnel Linings Sealing Systems
13.4	Innovations in Precast Segmental Tunnel Linings Reinforcement Systems
13.5	Innovations in Precast Segmental Tunnel Linings Corrosion Resistance
13.6	Innovations in Precast Segmental Tunnel Linings Design
13.7	Innovative Applications for Precast Segmental Tunnel Linings
13.8	Precast Segmental Tunnel Linings Applications in Shaft Construction
13.9	Utility Corridor Tunnel Construction Using Precast Segmental Tunnel Linings
13.10	Gas and Oil Industry Pipeline Tunnels Shanghai Metro Double-O Tunnel
13.11	Innovations in Precast Segmental Tunnel Linings Casting Plant Technology
13.12	Innovative Permanent Identification Systems for Each Precast Segmental Tunnel Linings Segment
13.13	Innovations in Precast Segmental Tunnel Linings Materials
13.14	Future Needs for Innovation in Precast Segmental Tunnel Linings Project Materials and Design
13.15	Future Innovative Needs
13.16	Innovative Future Applications for Precast Segmental Tunnel Linings
13.17	Geothermal Energy Recovery Using Precast Segmental Tunnel Linings
13.18	Innovations in Mechanized Tunneling for Cross-Passage Construction

FRC Precast Segmental Lining of TBM Tunnels

